SPECIFIC BEHAVIOR OF KBF3OH OBSERVED IN PMR ON THE INTERACTION* BETWEEN La(III)-NITRILOTRIACETATE CHELATE AND FLUOROBORATES

Yoshiki MORIGUCHI

Department of Chemistry, Fukuoka University of Education Munakata-machi, Munakata-gun, Fukuoka 811-41

The effects of NaF, KBF₃OH and NaBF₄ on the proton magnetic resonance spectra of La(III)-NTA chelate were investigated in 1:2 molar ratio of La to NTA in $\rm H_2O$ solution at 35°C. The remarkable change of PMR spectra occurs in the presence of KBF₃OH, which is not explained by simple effect of free F⁻ formed by hydrolysis from BF₄ and BF₃OH⁻.

In a previous paper¹⁾, the author reported the remarkable effect of potassium monohydroxotrifluoroborate(KBF3OH) on the visible absorption spectra of lanthanum(III) -alizarin complexon(La-ALC) and reports in this paper that the remarkable effect of KBF3OH is also found on PMR spectra of lanthanum(III) chelate(La-NTA) of nitrilotriacetic acid(NTA) same quadridentate ligand as ALC.

The pH dependence of chemical shift and that of half width are shown in Figs.l and 2. In the absence of La, a sharp peak corresponding to dissolve species, $\mathrm{HL^{2-}}$, at pH region 3 - 9 appears at τ value 6.2 and a sharp peak corresponding to L at high pH region appears at τ value 6.9. The pH dependence of these half width is little. In the presence of 1:2 molar ratio La to NTA, a peak with remarkable pH dependence of half width appears at τ value 6.6, and it is assumed that the broadening of this peak is based on the intermolecular ligand exchange between free NTA and La-NTA.

Effects of NaF, NaBF $_4$ and KBF $_3$ OH on PMR spectra of La-NTA are summarized in Table I with other data for comparative experiments. In spite of equimolar addition of fluorine to La-NTA, the remarkable change occurs only in the presence of KBF $_3$ OH, i. e., a strong peak at τ value 6.6 separates from two weak broad peaks, which are an original peak and a new peak corresponding to free NTA. NaF and NaBF $_4$ bring about same effect as KBF $_3$ OH only by rising reaction temperature, rising concentration of fluorine or prolonging reaction time. Thus, it is assumed that the effective species on these spectrum changes is not F $_1$ or BF $_4$ but one or more species of hydrolysis products of BF $_4$ as described by following equations $_2$?

$$BF_4 \xrightarrow{+OH^-} BF_3OH^- \xrightarrow{+OH^-} BF_2(OH)_2 \xrightarrow{+OH^-} BF(OH)_3$$

The spectrum change of La-NTA from a sharp single peak to two broad peaks in the presence of KBF3OH may indicate that the interaction between one of three hydroxofluoroborates as described above and either NTA or La-NTA slows down ligand exchange rate between NTA and La-NTA. As is evident from Table I in comparison with Figs. 1 and

Fig.1 The pH dependence of methylene proton chemical shift in NTA

Fig. 2 The pH dependence of half width of methylene proton signal in NTA

2, each spectrum change when $B(OH)_3$ or KBF_3OH is added to NTA corresponds to the pH dependence of NTA spectrum itself, and a signal peak when $B(OH)_3$ is added to La-NTA remains single without separating two peaks. Thus, we assumed that most effective species of three hydroxofluoroborates which brings about the remarkable spectrum change is not a high OH-containing $BF_2(OH)_2$ or $BF(OH)_3$ but a high fluorine-containing BF_3OH because the effect of $B(OH)_3$ on La-NTA spectrum is a little, and that reaction mechanism of BF_3OH and La-NTA is as described by following schemes(the charge on ions is omitted for purpose of simplicity).

most probable effective species; q=3, r=1

Scheme I

Scheme II

The reaction of NaF and La-NTA in scheme I is stepwise attacking of fluoride ion to La-NTA chelate, on the other hand, the reaction of BF3OH and La-NTA in scheme II is an effective elimination of La from La-NTA chelate by direct attacking of three fluorines to La-NTA chelate. In view of the fact that the effect of regular tetrahedral BF_4 on La-NTA is little, the effect of BF_3OH on La-NTA may be related to its distort tetrahedral structure.

Experimentals

The PMR spectra were taken on Hitachi R-22 high resolution spectrometer operating at 90 MHz for proton. Chemical shifts were measured relative to t-buthylalcohol as an internal reference (τ value 8.78). Reagent grade 0.22 M and 1.1 M lanthanum nitrate were used to prepare sample solutions of lanthanum-free NTA and 1:2 lanthanum-NTA in water and the pH of these solutions is previously controlled by adding nitric acid or sodium hydroxide water solution. The effects of fluoride and fluoroborates on La-NTA PMR spectra were observed after adding solid NaF, NaBF₄ or KBF₃OH to above La-NTA water solution and standing for prescribed time at 35°C.

Potassium hydroxotrifluoroborate, KBF₃OH, was prepared by Wamser's method³⁾ and its purity was confirmed by B, F, K, elementary analyses and X-ray analysis.

Table I

			рН		l _{H NMR} a) d)				
	х	X/NTA (molar ratio)	before adding X	after adding X ^{a)}	Peak I		Peak II		
					γ value	half width (Hz)	γ value	half width (Hz)	
NTA + X	в(он) ₃	0.5	5.70	5.50	6.23	1.3			
	в(он) ₃	0.5	9.31	8.96			6.54	1.5	
	KBF ₃ OH	0.5	5.70	4.02	6.22	1.6			
	KBF ₃ OH	0.5	9.22	6.00	6.24	1.0			
La-NTA e) X	B(OH) ₃	0.5	5.71	5.66			6.51	8.0	
	B(OH) ₃	0.5	9.38	8.15			6.59	5.0	-
	Na F	0.5	5.69	7.50			6.55	6.1	
	NaF	0.5	9.21	9.22			6.60	1.5	
	NaF	1.4	6.44		6.25	9.0	6.59	8.0	
	NaBF ₄	0.5/4	5.68	5.60			6.57	6.4	
	NaBF,	0.5/4	9.19	9.10			6.60	1.4	
	NaBF ₄ b)	2.0	9.20	6.65	6.26	4.5	6 . 5 9	8.0	pptn.c)
	KBF ₃ OH	0.5/3	5.61	5.40	6.23	9.2	6.66	10.5	
	KBF ₃ OH	0.5/3	9.10	6.28	6.25	11.0	6.59	9.0	
	KBF ₃ OH	0.6	9.10	4.85	6.22	4.0			pptn.

- a) Values allowed to stand for 30 min. after adding X except b)
 b) Values allowed to stand for 6 days after adding X
 c) Forming precipitation
 d) On NMR data in the absence of X, refer to Figs. 1 and 2.
 e) 1:2 molar ratio of La to NTA mixture

References

- 1) Y. Moriguchi, T. Kuwabara and I. Hosokawa, Bull. Chem. Soc. Japan, 44, 3496(1971)
- 2) Y. Moriguchi and I. Hosokawa, Nippon Kagaku Zashi, 92, 56(1971)
- 3) C. A. Wamser, J. Am. Chem. Soc., 70, 1209(1948)
- * This report was presented at 23rd Symposium of Coordination Chemistry, Fukuoka 18, Oct., 1973

(Received November 5, 1973)